陈蕾 1,*向进 2赵年 3,**陈同生 4
作者单位
摘要
1 佛山科学技术学院物理与光电工程学院,广东 佛山 528000
2 重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆 400044
3 湘潭大学物理与光电工程学院,湖南 湘潭 411105
4 华南师范大学生物光子学研究院,广东省激光生命科学重点实验室,广东 广州 510631
二次谐波成像作为一种高空间分辨率和高穿透深度的非线性光学成像技术,可以避免荧光成像中由能量吸收导致的光漂白和饱和吸收等问题,在临床诊断和生物医学领域具有广阔的应用前景。笔者引入了一种具有中心反演对称破缺、高非线性光学效应的材料——硅量子点作为二次谐波探针,同时为了增强硅量子点的生物亲和性并减少其表面氧化,利用聚乙二醇对硅量子点进行修饰,并将其作为生物探针探究了其在人肝癌细胞(HepG2)中的二次谐波成像效果。通过与双光子荧光成像结果进行对比发现,基于聚乙二醇修饰的硅量子点的二次谐波成像技术具有可靠性和稳定性。本研究对未来硅量子点在分子成像、药物递送和干细胞治疗中的应用具有积极的推动作用。
非线性光学 二次谐波成像 硅量子点 人肝癌细胞 生物探针 
中国激光
2023, 50(21): 2107109
Zewei Luo 1,2†Guodong Zang 1,2Ge Wu 1,2Mengting Kong 1,2[ ... ]Tongsheng Chen 1,2,*
Author Affiliations
Abstract
1 South China Normal University, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
2 South China Normal University, College of Biophotonics, Guangdong Key Laboratory of Laser Life Science, Guangzhou, China
Structured illumination-based super-resolution Förster resonance energy transfer microscopy (SIM-FRET) provides an approach to resolving molecular behavior localized in intricate biological structures in living cells. However, SIM reconstruction artifacts will decrease the quantitative analysis fidelity of SIM-FRET signals. To address these issues, we have developed a method called HiFi spectrum optimization SIM-FRET (HiFi-SO-SIM-FRET), which uses optimized Wiener parameters in the two-step spectrum optimization to suppress sidelobe artifacts and achieve super-resolution quantitative SIM-FRET. We validated our method by demonstrating its ability to reduce reconstruction artifacts while maintaining the accuracy of FRET signals in both simulated FRET models and live-cell FRET-standard construct samples. In summary, HiFi-SO-SIM-FRET provides a promising solution for achieving high spatial resolution and reducing SIM reconstruction artifacts in quantitative FRET imaging.
super-resolution structured illumination microscopy Förster resonance energy transfer living cells quantitative measurement 
Advanced Photonics Nexus
2023, 2(5): 056008
Zewei Luo 1,2†Ge Wu 1,2†Mengting Kong 1,2Zhi Chen 1,2[ ... ]Tongsheng Chen 1,2,3,6,*
Author Affiliations
Abstract
1 Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou 510631, China
2 Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
3 SCNU Qingyuan Institute of Science and Technology Innovation, South China Normal University, Qingyuan 511520, China
4 Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
5 e-mail: fanjc@cqupt.edu.cn
6 e-mail: chentsh@scnu.edu.cn
Förster resonance energy transfer (FRET) microscopy provides unique insight into the functionality of biological systems via imaging the spatiotemporal interactions and functional state of proteins. Distinguishing FRET signals from sub-diffraction regions requires super-resolution (SR) FRET imaging, yet is challenging to achieve from living cells. Here, we present an SR FRET method named SIM-FRET that combines SR structured illumination microscopy (SIM) imaging and acceptor sensitized emission FRET imaging for live-cell quantitative SR FRET imaging. Leveraging the robust co-localization prior of donor and accepter during FRET, we devised a mask filtering approach to mitigate the impact of SIM reconstruction artifacts on quantitative FRET analysis. Compared to wide-field FRET imaging, SIM-FRET provides nearly twofold spatial resolution enhancement of FRET imaging at sub-second timescales and maintains the advantages of quantitative FRET analysis in vivo. We validate the resolution enhancement and quantitative analysis fidelity of SIM-FRET signals in both simulated FRET models and live-cell FRET-standard construct samples. Our method reveals the intricate structure of FRET signals, which are commonly distorted in conventional wide-field FRET imaging.
Photonics Research
2023, 11(5): 887
Shutong Liu 1,2Limei Su 1,2Han Sun 1,2Tongsheng Chen 1,2,4[ ... ]Zhengfei Zhuang 1,2,**
Author Affiliations
Abstract
1 MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
2 Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
3 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, P. R. China
4 SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511500, P. R. China
The automatic and accurate identification of apoptosis facilitates large-scale cell analysis. Most identification approaches using nucleus fluorescence imaging are based on specific morphological parameters. However, these parameters cannot completely describe nuclear morphology, thus limiting the identification accuracy of models. This paper proposes a new feature extraction method to improve the performance of the model for apoptosis identification. The proposed method uses a histogram of oriented gradient (HOG) of high-frequency wavelet coefficients to extract internal and edge texture information. The HOG vectors are classified using support vector machine. The experimental results demonstrate that the proposed feature extraction method well performs apoptosis identification, attaining 95.7% accuracy with low cost in terms of time. We confirmed that our method has potential applications to cell biology research.The automatic and accurate identification of apoptosis facilitates large-scale cell analysis. Most identification approaches using nucleus fluorescence imaging are based on specific morphological parameters. However, these parameters cannot completely describe nuclear morphology, thus limiting the identification accuracy of models. This paper proposes a new feature extraction method to improve the performance of the model for apoptosis identification. The proposed method uses a histogram of oriented gradient (HOG) of high-frequency wavelet coefficients to extract internal and edge texture information. The HOG vectors are classified using support vector machine. The experimental results demonstrate that the proposed feature extraction method well performs apoptosis identification, attaining 95.7% accuracy with low cost in terms of time. We confirmed that our method has potential applications to cell biology research.
Apoptosis nucleus fluorescence imaging HOG wavelet decomposition 
Journal of Innovative Optical Health Sciences
2023, 16(2): 2244003
王冠晨 1,2陈同生 1,2,3,*
作者单位
摘要
1 华南师范大学生物光子学研究院,教育部激光生命科学重点实验室,广东 广州 510631
2 华南师范大学生物光子学研究院,广东省激光生命科学重点实验室,广东 广州 510631
3 师大瑞利光电科技(清远)有限公司,广东 清远 511517
亚细胞器是细胞的重要组成单位,其形态结构与动力学特性直接反映了细胞的生理状态。21世纪初新兴的结构光照明显微技术、受激发射损耗显微技术和单分子定位成像技术等超分辨显微成像技术,巧妙地绕过了光学衍射极限对成像分辨率的限制,目前已被广泛应用于活细胞亚细胞器精细结构的观察及其动力学过程的监测上。本文首先介绍了上述三种超分辨显微成像技术的基本原理和特点,然后介绍了活细胞中细胞核、细胞骨架、线粒体、内质网等亚细胞器的超分辨精细结构和动力学特性,最后讨论了亚细胞器超分辨精细结构成像与机器学习、图像处理相结合的发展潜力。
生物光学 超分辨显微术 荧光显微镜 亚细胞器精细结构 机器学习 
中国激光
2022, 49(20): 2007203
高璐 1,2翟士贤 1,2孙晗 1,2陈同生 1,2,*
作者单位
摘要
1 华南师范大学生物光子学研究院教育部激光生命科学重点实验室,广东 广州 510631
2 华南师范大学生物光子学研究院广东省激光生命科学重点实验室,广东 广州 510631
QuanTi-FRET是一种通过对多种荧光共振能量转移(FRET)标准质粒样本进行多次FRET成像来测量FRET成像系统敏化淬灭转化因子(G)和供受体通道激发效率校正因子(β)的方法。本课题组发展了一种基于一次成像测量系统校正因子Gβ的智能型QuanTi-FRET方法——AutoQT-FRET方法。AutoQT-FRET方法包括如下4个步骤:1)将分别转染了不同FRET标准串联质粒(C5V、C17V、C32V和CTV)的细胞合并到一个细胞培养皿中培养,对该皿细胞样本进行三通道FRET成像;2)对三通道图像进行区域划分,并根据不同种类的FRET标准质粒对各区域进行归类;3)对归类成功的区域逐像素绘制三维空间散点图,以确定各个FRET标准质粒的标准线;4)使用确定好的各质粒标准线对整个视野内的细胞区域进行质粒分类与系统校正因子Gβ的测量。该方法大幅简化了系统校正因子的测量过程,缩短了测量时间。本文比较了AutoQT-FRET方法与其他方法测量系统校正因子的优劣,实验结果表明:AutoQT-FRET方法操作简单,而且测量稳定性与准确度都有所提高。
生物光学 荧光 共振 能量转移 系统校正 荧光显微镜 
中国激光
2022, 49(5): 0507203
尹傲 1,2翟士贤 1,2孙晗 1,2刘智 1,2[ ... ]陈同生 1,2,3,*
作者单位
摘要
1 华南师范大学生物光子学研究院教育部激光生命科学重点实验室, 广东 广州 510631
2 华南师范大学生物光子学研究院广东省激光生命科学重点实验室, 广东 广州 510631
3 师大瑞利光电科技(清远)有限公司, 广东 清远 511517
基于受体敏化的3-cube(通道)荧光共振能量转移(FRET)成像方法(通常称为E-FRET方法)是活细胞定量FRET检测中主流的成像分析技术。基于激发发射光谱线性分离的定量FRET检测方法(mExEm-spFRET)因天然地克服光谱串扰的能力,在活细胞定量FRET检测中具备非常好的鲁棒性。利用表达不同模型质粒的乳腺癌MCF-7活细胞,在不同信噪比(RSN)的条件下分别进行了定量E-FRET和mExEm-spFRET测量,以FRET效率(E)和质粒供受体浓度比(RC)参量作为指标,评估二种方法的鲁棒性。对于RSN>3的细胞,两种方法得到一致的E值,但是E-FRET方法得到的个别质粒RC值偏小;对于RSN<3的细胞,两种方法都能得到一致的RC值,但是E-FRET方法得到的个别质粒E值误差率大于0.1,与文献值偏差稍大。E-FRET与mExEm-spFRET具有几乎一致的活细胞定量FRET检测能力,但是mExEm-spFRET的鲁棒性优于E-FRET方法。
光谱学 荧光共振能量转移(FRET) 定量FRET测量 活细胞 光谱线性分离 鲁棒性 
中国激光
2021, 48(21): 2107001
刘智 1,2罗泽伟 1,2王正印 1,2涂壮 1,2[ ... ]陈同生 1,2,*
作者单位
摘要
1 华南师范大学生物光子学研究院, 教育部激光生命科学重点实验室, 广东 广州 510631
2 华南师范大学生物光子学研究院, 广东省激光生命科学重点实验室, 广东 广州 510631
由于具有低光毒性、高速宽视场以及多通道三维超分辨成像能力,超分辨结构照明显微术(SR-SIM)特别适合用于活细胞中动态精细结构的实时检测研究。超分辨结构照明显微图像重建算法(SIM-RA)对SR-SIM的成像质量具有决定性影响。本文首先简要介绍了超分辨显微术的发展现状,阐述了研究SR-SIM图像重建算法的必要性;然后介绍了SR-SIM的成像原理,并重点介绍了SR-SIM图像重建算法,包括SR-SIM中频繁使用的去卷积重建算法、SR-SIM校准与重建过程中参数值获取的算法,以及目前发展的超分辨结构照明显微图像重建算法,并介绍了SR-SIM工具箱;最后总结了当前发展超分辨结构照明显微图像重建算法需解决的5个问题。
生物光子学 光学成像 超分辨显微术 结构照明显微术 图像重建算法 荧光 多帧重建 
中国激光
2021, 48(3): 0307001
Author Affiliations
Abstract
1 MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
2 Department of Pain Management, the First A±liated Hospital of Jinan University, Guangzhou 510630, P. R. China
Exact interaction mechanism between Bax and Bcl-XL, two key Bcl-2 family proteins, is an interesting and controversial issue. Partial acceptor photobleaching-based quantitative fluorescence resonance energy transfer (FRET) measurement, PbFRET, is a widely used FRET quantification method in living cells. In this report, we implemented pixel-to-pixel PbFRET imaging on a wide-field microscope to map the FRET e±ciency (ET images of single living HepG2 cells co-expressing CFP-Bax and YFP-Bcl-XL. The E value between CFP-Bax and YFP-Bcl-XL was 4.59% in cytosol and 11.31% on mitochondria, conclusively indicating the direct interaction of the two proteins, and the interaction of the two proteins was strong on mitochondria and modest in cytosol.
Bax Bcl-XL protein–protein interaction FRET imaging living cells 
Journal of Innovative Optical Health Sciences
2020, 13(3): 2050011
尹傲 1,2陈同生 1,2,*
作者单位
摘要
1 华南师范大学生物光子学研究院教育部激光生命科学重点实验室, 广东 广州 510631
2 华南师范大学生物光子学研究院广东省激光生命科学重点实验室, 广东 广州 510631
由于天然克服光谱串扰的能力以及高灵敏和无损伤的特性,基于光谱分离的荧光共振能量转移(FRET)定量检测(spFRET)方法被公认为是最有应用潜力的活细胞定量FRET检测技术。首先简要介绍FRET定量检测方法以及国内外的相关研究进展;其次重点介绍基于发射光谱线性分离(Em-unmixing)和基于激发发射光谱线性分离(ExEm-unmixing)的两种定量FRET检测技术的原理、发展进程,并比较了这两种检测技术的稳健性;最后对这两种spFRET技术在活细胞FRET应用中的潜在优势进行展望。
生物光学 荧光共振能量转移 光谱分离 定量荧光共振能量转移测量 活细胞 
中国激光
2020, 47(2): 0207009

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!